3.1.38 \(\int \frac {x^3 (a+b \cosh ^{-1}(c x))}{(d-c^2 d x^2)^2} \, dx\) [38]

Optimal. Leaf size=179 \[ -\frac {b}{2 c^4 d^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b \sqrt {-1+c x}}{2 c^4 d^2 \sqrt {1+c x}}+\frac {b \cosh ^{-1}(c x)}{2 c^4 d^2}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^4 d^2}+\frac {\left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-e^{2 \cosh ^{-1}(c x)}\right )}{c^4 d^2}+\frac {b \text {PolyLog}\left (2,e^{2 \cosh ^{-1}(c x)}\right )}{2 c^4 d^2} \]

[Out]

1/2*b*arccosh(c*x)/c^4/d^2+1/2*x^2*(a+b*arccosh(c*x))/c^2/d^2/(-c^2*x^2+1)-1/2*(a+b*arccosh(c*x))^2/b/c^4/d^2+
(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)/c^4/d^2+1/2*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c*x+1
)^(1/2))^2)/c^4/d^2-1/2*b/c^4/d^2/(c*x-1)^(1/2)/(c*x+1)^(1/2)-1/2*b*(c*x-1)^(1/2)/c^4/d^2/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {5934, 5913, 3797, 2221, 2317, 2438, 91, 12, 79, 54} \begin {gather*} -\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^4 d^2}+\frac {\log \left (1-e^{2 \cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{c^4 d^2}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}+\frac {b \text {Li}_2\left (e^{2 \cosh ^{-1}(c x)}\right )}{2 c^4 d^2}-\frac {b \sqrt {c x-1}}{2 c^4 d^2 \sqrt {c x+1}}-\frac {b}{2 c^4 d^2 \sqrt {c x-1} \sqrt {c x+1}}+\frac {b \cosh ^{-1}(c x)}{2 c^4 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^2,x]

[Out]

-1/2*b/(c^4*d^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (b*Sqrt[-1 + c*x])/(2*c^4*d^2*Sqrt[1 + c*x]) + (b*ArcCosh[c*x]
)/(2*c^4*d^2) + (x^2*(a + b*ArcCosh[c*x]))/(2*c^2*d^2*(1 - c^2*x^2)) - (a + b*ArcCosh[c*x])^2/(2*b*c^4*d^2) +
((a + b*ArcCosh[c*x])*Log[1 - E^(2*ArcCosh[c*x])])/(c^4*d^2) + (b*PolyLog[2, E^(2*ArcCosh[c*x])])/(2*c^4*d^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 54

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[b*(x/a)]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 91

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c - a*d
)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d*e - c*f)*(n + 1))), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3797

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> Simp[(-I)*((
c + d*x)^(m + 1)/(d*(m + 1))), x] + Dist[2*I, Int[((c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*
fz*x))/E^(2*I*k*Pi))))/E^(2*I*k*Pi), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 5913

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/e, Subst[Int[(
a + b*x)^n*Coth[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 5934

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] + (-Dist[f^2*((m - 1)/(2*e*(p +
 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Dist[b*f*(n/(2*c*(p + 1)))*Simp[
(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*A
rcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1]
&& IGtQ[m, 1]

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \cosh ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^2} \, dx &=\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}+\frac {b \int \frac {x^2}{(-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{2 c d^2}-\frac {\int \frac {x \left (a+b \cosh ^{-1}(c x)\right )}{d-c^2 d x^2} \, dx}{c^2 d}\\ &=-\frac {b}{2 c^4 d^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}+\frac {\text {Subst}\left (\int (a+b x) \coth (x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^4 d^2}+\frac {b \int \frac {c^2 x}{\sqrt {-1+c x} (1+c x)^{3/2}} \, dx}{2 c^4 d^2}\\ &=-\frac {b}{2 c^4 d^2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^4 d^2}-\frac {2 \text {Subst}\left (\int \frac {e^{2 x} (a+b x)}{1-e^{2 x}} \, dx,x,\cosh ^{-1}(c x)\right )}{c^4 d^2}+\frac {b \int \frac {x}{\sqrt {-1+c x} (1+c x)^{3/2}} \, dx}{2 c^2 d^2}\\ &=-\frac {b}{2 c^4 d^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b \sqrt {-1+c x}}{2 c^4 d^2 \sqrt {1+c x}}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^4 d^2}+\frac {\left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-e^{2 \cosh ^{-1}(c x)}\right )}{c^4 d^2}-\frac {b \text {Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^4 d^2}+\frac {b \int \frac {1}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{2 c^3 d^2}\\ &=-\frac {b}{2 c^4 d^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b \sqrt {-1+c x}}{2 c^4 d^2 \sqrt {1+c x}}+\frac {b \cosh ^{-1}(c x)}{2 c^4 d^2}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^4 d^2}+\frac {\left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-e^{2 \cosh ^{-1}(c x)}\right )}{c^4 d^2}-\frac {b \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 \cosh ^{-1}(c x)}\right )}{2 c^4 d^2}\\ &=-\frac {b}{2 c^4 d^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b \sqrt {-1+c x}}{2 c^4 d^2 \sqrt {1+c x}}+\frac {b \cosh ^{-1}(c x)}{2 c^4 d^2}+\frac {x^2 \left (a+b \cosh ^{-1}(c x)\right )}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^4 d^2}+\frac {\left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-e^{2 \cosh ^{-1}(c x)}\right )}{c^4 d^2}+\frac {b \text {Li}_2\left (e^{2 \cosh ^{-1}(c x)}\right )}{2 c^4 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 209, normalized size = 1.17 \begin {gather*} \frac {-b \sqrt {\frac {-1+c x}{1+c x}}+\frac {b \sqrt {\frac {-1+c x}{1+c x}}}{1-c x}+\frac {b c x \sqrt {\frac {-1+c x}{1+c x}}}{1-c x}-\frac {2 a}{-1+c^2 x^2}+\frac {b \cosh ^{-1}(c x)}{1-c x}+\frac {b \cosh ^{-1}(c x)}{1+c x}-2 b \cosh ^{-1}(c x)^2+4 b \cosh ^{-1}(c x) \log \left (1-e^{\cosh ^{-1}(c x)}\right )+4 b \cosh ^{-1}(c x) \log \left (1+e^{\cosh ^{-1}(c x)}\right )+2 a \log \left (1-c^2 x^2\right )+4 b \text {PolyLog}\left (2,-e^{\cosh ^{-1}(c x)}\right )+4 b \text {PolyLog}\left (2,e^{\cosh ^{-1}(c x)}\right )}{4 c^4 d^2} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^2,x]

[Out]

(-(b*Sqrt[(-1 + c*x)/(1 + c*x)]) + (b*Sqrt[(-1 + c*x)/(1 + c*x)])/(1 - c*x) + (b*c*x*Sqrt[(-1 + c*x)/(1 + c*x)
])/(1 - c*x) - (2*a)/(-1 + c^2*x^2) + (b*ArcCosh[c*x])/(1 - c*x) + (b*ArcCosh[c*x])/(1 + c*x) - 2*b*ArcCosh[c*
x]^2 + 4*b*ArcCosh[c*x]*Log[1 - E^ArcCosh[c*x]] + 4*b*ArcCosh[c*x]*Log[1 + E^ArcCosh[c*x]] + 2*a*Log[1 - c^2*x
^2] + 4*b*PolyLog[2, -E^ArcCosh[c*x]] + 4*b*PolyLog[2, E^ArcCosh[c*x]])/(4*c^4*d^2)

________________________________________________________________________________________

Maple [A]
time = 7.83, size = 278, normalized size = 1.55

method result size
derivativedivides \(\frac {-\frac {a}{4 d^{2} \left (c x -1\right )}+\frac {a \ln \left (c x -1\right )}{2 d^{2}}+\frac {a}{4 d^{2} \left (c x +1\right )}+\frac {a \ln \left (c x +1\right )}{2 d^{2}}-\frac {b \mathrm {arccosh}\left (c x \right )^{2}}{2 d^{2}}-\frac {b \sqrt {c x +1}\, \sqrt {c x -1}\, c x}{2 d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \,c^{2} x^{2}}{2 d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \,\mathrm {arccosh}\left (c x \right )}{2 d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b}{2 d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \,\mathrm {arccosh}\left (c x \right ) \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}+\frac {b \polylog \left (2, -c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}+\frac {b \,\mathrm {arccosh}\left (c x \right ) \ln \left (1-c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}+\frac {b \polylog \left (2, c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}}{c^{4}}\) \(278\)
default \(\frac {-\frac {a}{4 d^{2} \left (c x -1\right )}+\frac {a \ln \left (c x -1\right )}{2 d^{2}}+\frac {a}{4 d^{2} \left (c x +1\right )}+\frac {a \ln \left (c x +1\right )}{2 d^{2}}-\frac {b \mathrm {arccosh}\left (c x \right )^{2}}{2 d^{2}}-\frac {b \sqrt {c x +1}\, \sqrt {c x -1}\, c x}{2 d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \,c^{2} x^{2}}{2 d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \,\mathrm {arccosh}\left (c x \right )}{2 d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b}{2 d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \,\mathrm {arccosh}\left (c x \right ) \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}+\frac {b \polylog \left (2, -c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}+\frac {b \,\mathrm {arccosh}\left (c x \right ) \ln \left (1-c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}+\frac {b \polylog \left (2, c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}}{c^{4}}\) \(278\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^2,x,method=_RETURNVERBOSE)

[Out]

1/c^4*(-1/4*a/d^2/(c*x-1)+1/2*a/d^2*ln(c*x-1)+1/4*a/d^2/(c*x+1)+1/2*a/d^2*ln(c*x+1)-1/2*b/d^2*arccosh(c*x)^2-1
/2*b/d^2/(c^2*x^2-1)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*c*x+1/2*b/d^2/(c^2*x^2-1)*c^2*x^2-1/2*b/d^2/(c^2*x^2-1)*arcco
sh(c*x)-1/2*b/d^2/(c^2*x^2-1)+b/d^2*arccosh(c*x)*ln(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))+b/d^2*polylog(2,-c*x-(c
*x-1)^(1/2)*(c*x+1)^(1/2))+b/d^2*arccosh(c*x)*ln(1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))+b/d^2*polylog(2,c*x+(c*x-1
)^(1/2)*(c*x+1)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^2,x, algorithm="maxima")

[Out]

-1/8*b*(((c^2*x^2 - 1)*log(c*x + 1)^2 + 2*(c^2*x^2 - 1)*log(c*x + 1)*log(c*x - 1) + (c^2*x^2 - 1)*log(c*x - 1)
^2 - 4*((c^2*x^2 - 1)*log(c*x + 1) + (c^2*x^2 - 1)*log(c*x - 1) - 1)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1)) +
2)/(c^6*d^2*x^2 - c^4*d^2) - 8*integrate(1/2*((c^2*x^2 - 1)*log(c*x + 1) + (c^2*x^2 - 1)*log(c*x - 1) - 1)/(c^
8*d^2*x^5 - 2*c^6*d^2*x^3 + c^4*d^2*x + (c^7*d^2*x^4 - 2*c^5*d^2*x^2 + c^3*d^2)*e^(1/2*log(c*x + 1) + 1/2*log(
c*x - 1))), x)) - 1/2*a*(1/(c^6*d^2*x^2 - c^4*d^2) - log(c^2*x^2 - 1)/(c^4*d^2))

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b*x^3*arccosh(c*x) + a*x^3)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {a x^{3}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx + \int \frac {b x^{3} \operatorname {acosh}{\left (c x \right )}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx}{d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**2,x)

[Out]

(Integral(a*x**3/(c**4*x**4 - 2*c**2*x**2 + 1), x) + Integral(b*x**3*acosh(c*x)/(c**4*x**4 - 2*c**2*x**2 + 1),
 x))/d**2

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^2,x)

[Out]

int((x^3*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^2, x)

________________________________________________________________________________________